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ABSTRACT 

Spatial modelling of various phenomena has been undertaken in many diversified fields. 

In this project, we concentrate on the modelling of the peak frequencies of brain signals 
and the objective is to fit and illustrate spatial regression with Simultaneous 
Autoregressive (SAR) covariance structure. We found that the peak frequencies can be 

modelled appropriately as, β β β ε= + + +2
00 11 1 2 21 1 2 ,i iY x x x x  with a 

simultaneous autoregressive correlation structure. 

 

 

INTRODUCTION 

Spatial modelling of various phenomena has been undertaken in 

many diversified fields. For instance, spatial modelling of rainfall (Smith, 

1994), spatial regression of relative humidity (Mahendran Shitan, 2004), 
trend surface analysis for agricultural land value data 1977-8 in Iowa 

(Cliff and Ord, 1981) and forest landscape patterns (Jin-Ping, Guo and 

Yang, Xiao, 1999), etc. Whenever we deal with spatial data, it is vital to 
be thoughtful of spatial correlation amongst the neighbouring sites and 

this feature has to be taken into consideration in the modelling process. 

 

In this project, we concentrate on the modelling of the peak 
frequencies of brain signals and the objective is to fit and illustrate 

spatial regression with Simultaneous Autoregressive (SAR) covariance 

structure. In section 2 regression with simultaneous autoregressive 
errors is briefly described and the methodology is in section 3. The 

results are presented in section 4 and finally the conclusions are drawn 

in section 5. 
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REGRESSION WITH SIMULTANEOUS AUTOREGRESSIVE 

(SAR) ERRORS 

In this study we fit regression model with Simultaneous Autoregressive 

(SAR) covariance structure and hence we briefly discuss the SAR model. 
The SAR model was first proposed by Whittle in 1954 where a given set of 

observations observed on a lattice are modelled as functions of the 

neighbouring sites. That is given a set of observations, say { },
i

X  the 

obsevations are modelled as follows, 
 

{ }ε
=
≠

= +∑
1

n

i ij j i
j
j i

X g X ,    1,2,..., ,i n=                          (1) 

 

where { }ijg is a sequence of constants, { }ε i is a sequence uncorrelated 

errors with ( )ε = 0iE and ( )ε σ= 2

iVar . A detailed account of the SAR 

model can be found in Cliff and Ord, 1981. 

 
A class of models that incorporates correlation reflecting the spatial struc-

ture is of the form, µ ε= + ,i i iY where iY is the random variable at site 

µ, ii  is the mean at site i which is modelled in terms of the covariates 

and εi is the random error terms. Further, we could allow εi to be a 

function of the neighbouring sites as, 

 

ε ε δ
=
≠

= +∑
1

,
n

i ij j i
j
j i

g    =1,2,..., ,i n                                       (2) 

 

where { }ijg is a sequence of constants, { }δi is a sequence 

uncorrelated errors with δ =( ) 0iE  and δ σ= 2( ) .iVar  This is what we 

call as Regression with Simultaneous Autoregressive (SAR) Errors. 

 

This model can be written in matrix forms as, ,G= += += += +ε ε δε ε δε ε δε ε δ where 

the vector ε ε ε= 1 2( , ,..., ),T

nε  vector δ δ δ= 1 2( , ,..., ),T

nδ  
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( )~ ,MVN 0,Σεεεε σ 2~ ( , )MVN 0 Iδδδδ and the matrix G is given as follows,  

 

 
 
 
 =
 
 
  

�

�

�

� � � � �

� �

12 13 1

21 23 2

31 32 3

1 2

0

0

0 .

0

n

n

n

n n

g g g

g g g

g g g

g g

G  

 
Since ijg are constants that need estimation and there are too many of 

them to be estimated, some simplification can be made by allowing 

ρ= ,G W  where ρ  is an unknown constant that can be estimated for a 

given data set and 

 

 
 
 
 =
 
 
  

�

�

�

� � � � �

� �

12 13 1

21 23 2

31 32 3

1 2

0

0

0 ,

0

n

n

n

n n

w w w

w w w

w w w

w w

W  

 

is a matrix of known weights. The covariance matrix, ΣΣΣΣ  would then be 

given as σ ρ ρ− −− −2 1 1( ) ( )TI W I W  for the SAR model. 

 

An application of regression model with SAR covariance structure has 

been applied to the Sudden Infant Death Syndrome (SIDS) data set 
for North Carolina Counties (see Kaluzny, et. al., 1998). 

 

 

METHODOLOGY 

In this section the data set used in this study and the model fitting are 

described. 
 

Data Set 

The primary data set consisted of the event-related optical (EROS) 
signals observed over time at 81 spatial locations (9×9 grid) over the 

cortical surface of the brain. The center of the brain surface is referenced 

by the co-ordinate (0, 0). The x and y axes each stretch from −4 to 4. 

Each time series had a length of n = 125. 
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A periodogram of the time series at each spatial location was then      

obtained (see Brockwell and Davis, 2002 for details). Thereafter, we 
produced a smoothed periodogram at each spatial location over the 

cortical surface of the brain. The frequency at which the peak of the 

smoothed periodogram occurred was noted at each spatial location. 
 

Figure 1 shows three dimensional plots of the peak frequency values over 

the cortical surface of the brain. The plot clearly suggest fitting a 

regression surface and in this paper we model the peak frequencies as 
functions of the location co-ordinates together with a spatially 

correlated error structure. 

 

 
Figure 1: 3D plot over the cortical surface 
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Model Fitting 

To apply the method described in section 2 and to obtain the weights, 
the researcher first needs to ascertain or define which are the 

neighbouring sites and then work out the weights. For this study the 

neighbours for a given spatial location has been defined as all spatial 
locations located within a unit in scale from the point of interest. The 

weights, =1ijw if point i and j are neighbours and = 0,ijw  otherwise. The 

neighbours of the eighty one spatial locations considered in this study 

are listed out in Table 1. 
 

Various models of increasing complexity as discussed in the results section 

(see Section 3), were fitted to the data set and the modelling process was 
done using S-plus Spatial Statistics Module (Kaluzny, et. al., 1998). 

 

To evaluate between competing models, the test statistic (Cressie, 1993) 

used in this study is, 
 

( ) χ+

− − 
= − 

 
∼

2 22 ( ),p p r

n p r
U L L r

n
                     (3) 

 

where n  is the number of data points, p  is the number of parameters 

estimated, r  is the additional number of parameters estimated, pL  is the 

negative log likelihood for the smaller model and +p rL  is the negative 

log likelihood for the larger model. The log likelihood function for the 
SAR model is given by  

 

I W I W I Wε εε εε εε ε2

2

1
log(2 ) log( ) log ( )( ) .

2 2 2

T Tn n
π σ ρ ρ ρ

σ
− − + − − − −     (4) 

 

To determine whether any of the coefficients of the covariates were 

significant or not, we used the Likelihood Ratio Test given as − 

( )λ χ− 22log ~ k (see Maddala, 1989), where 

 

 
                                  Maximum of Likelihood under restrictions 

                   λ =                                                                                             (5) 

                               Maximum of Likelihood without restrictions 
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TABLE 1: Peak frequencies and the neighbours of 81  

spatial locations on the brain 
 
 

Row 
Spatial 

Location 

X1 

(x-axis) 

Y2 

(y-axis) 

Peak 

frequencies 
Neighbours 

1 (-4, -4) -4 -4 0.20 2, 10 

2 (-4, -3) -4 -3 0.18 1,3,11 

3 (-4,-2) -4 -2 0.15 2,4,12 

4 (-4,-1) -4 -1 0.15 3,5,13 

5 (-4, 0) -4 0 0.15 4,6,14 

6 (-4, 1) -4 1 0.15 5,7,15 

7 (-4, 2) -4 2 0.15 6,8,16 

8 (-4, 3) -4 3 0.20 7,9,17 

9 (-4, 4) -4 4 0.20 8,18 

10 (-3, -4) -3 -4 0.20 1,11,19 

11 (-3, -3) -3 -3 0.20 2,10,12,20 

12 (-3, -2) -3 -2 0.20 3,11,13,21 

13 (-3, -1) -3 -1 0.19 4,12,14,22 

14 (-3, 0) -3 0 0.25 5,13,15,23 

15 (-3, 1) -3 1 0.31 6,14,16,24 

16 (-3, 2) -3 2 0.25 7,15,17,25 

17 (-3, 3) -3 3 0.30 8,16,18,26, 

18 (-3, 4) -3 4 0.30 9,17,27 

19 (-2, -4) -2 -4 0.16 10,20,28 

20 (-2, -3) -2 -3 0.19 11,19,21,29 

21 (-2, -2) -2 -2 0.14 12,20,22,30 

22 (-2, -1) -2 -1 0.27 13,21,23,31 

23 (-2, 0) -2 0 0.25 14,22,24,32 

24 (-2, 1) -2 1 0.30 15,23,25,33 

25 (-2, 2) -2 2 0.32 16,24,26,34 

26 (-2, 3) -2 3 0.31 17,25,27,35 

27 (-2, 4) -2 4 0.29 18,26,36 

28 (-1, -4) -1 -4 0.16 19,29,37 

29 (-1, -3) -1 -3 0.12 20,28,30,38 

30 (-1, -2) -1 -2 0.06 21,29,31,39 

31 (-1, -1) -1 -1 0.30 22,30,32,40 

32 (-1, 0) -1 0 0.27 23,31,33,41 

33 (-1, 1) -1 1 0.22 34,32,34,42 

34 (-1, 2) -1 2 0.16 25,33,35,43 

35 (-1, 3) -1 3 0.20 26,34,36,44 

36 (-1, 4) -1 4 0.30 27,35,45 

37 (0, -4) 0 -4 0.26 28,38,46 

38 (0, -3) 0 -3 0.32 29,37,39,47 

39 (0, -2) 0 -2 0.08 30,38,40,48 

40 (0, -1) 0 -1 0.06 31,39,41,49 

41 (0, 0) 0 0 0.24 32,40,42,50 

42 (0, 1) 0 1 0.29 33,41,43,51 

43 (0, 2) 0 2 0.05 34,42,44,52 

44 (0, 3) 0 3 0.09 35,43,45,53 

45 (0, 4) 0 4 0.27 36,44,54 

46 (1, -4) 1 -4 0.27 37,47,55 

47 (1, -3) 1 -3 0.31 38,46,48,56 

48 (1, -2) 1 -2 0.29 39,74,79,57 

49 (1, -1) 1 -1 0.21 40,48,50,58 
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TABLE 1(continued): Peak frequencies and the neighbours  

of 81 spatial locations on the brain 

 

Row 
Spatial 

Location 

X1 

(x-axis) 

Y2 

(y-axis) 

Peak 

frequencies 
Neighbours 

50 (1, 0) 1 0 0.11 41,49,51,59 

51 (1, 1) 1 1 0.07 42,50,52,60 

52 (1, 2) 1 2 0.09 43,51,53,61 

53 (1, 3) 1 3 0.08 44,52,54,62 

54 (1, 4) 1 4 0.27 45,53,63 

55 (2, -4) 2 -4 0.32 46,56,64 

56 (2, -3) 2 -3 0.29 47,55,57,65 

57 (2, -2) 2 -2 0.30 48,56,58,66 

58 (2, -1) 2 -1 0.30 49,57,59,67 

59 (2, 0) 2 0 0.13 50,58,60,68 

60 (2, 1) 2 1 0.19 51,59,61,69 

61 (2, 2) 2 2 0.10 52,60,62,70 

62 (2, 3) 2 3 0.09 53,61,63,71 

63 (2, 4) 2 4 0.17 54,62,72 

64 (3, -4) 3 -4 0.33 55,65,73 

65 (3, -3) 3 -3 0.35 56,64,66,74 

66 (3, -2) 3 -2 0.32 57,65,67,75 

67 (3, -1) 3 -1 0.32 58,66,68,76 

68 (3, 0) 3 0 0.20 59,67,69,77 

69 (3, 1) 3 1 0.13 60,68,70,78 

70 (3, 2) 3 2 0.16 61,69,71,79 

71 (3, 3) 3 3 0.10 62,70,72,80 

72 (3, 4) 3 4 0.20 63,71,81 

73 (4, -4) 4 -4 0.33 64,74 

74 (4, -3) 4 -3 0.31 65,73,75 

75 (4, -2) 4 -2 0.31 66,74,76 

76 (4, -1) 4 -1 0.29 67,75,77 

77 (4, 0) 4 0 0.20 68,76,78 

78 (4, 1) 4 1 0.19 69,77,79 

79 (4, 2) 4 2 0.30 70,78,80 

80 (4, 3) 4 3 0.15 71,79,81 

81 (4, 4) 4 4 0.07 72,80 

 

 

RESULTS 

In this section the results of our study are presented.  

 

We have seen that Figure 1 clearly suggests fitting a regression 

surface. However data values of the neighbouring points are likely to be 
correlated. As such tests for spatial correlation were conducted using 

the Moran and Geary Statistic. The Moran spatial correlation was 

found to be 0.5229 with a standard error of 0.0819. The computed z 

statistic value was 6.534 and had a p-value of 6.402 × 10
−11

. The 

Geary spatial correlation value was 0.4997 with a standard error of 

0.0827. The computed z statistic value was −6.047 and a p-value of 
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1.477 × 10
−9.

 Both these tests indicate that the observations were 

significantly spatially correlated due to the extremely small p-value 
thereby rejecting the null hypothesis of no spatial correlation. Hence, this 

prompted us to fit various models of increasing complexity with spatially 

correlated error structure. 
 

Let iY  represent the peak frequency value recorded at point 1,i x be 

the coordinate of x-axis and 2x  be the coordinate of the y-axis over the 

cortical surface of the brain. 

 

The eighteen (18) models considered in this study were, 

 

β ε= +00 ,i iY          (Model 1) 

 

β β ε= + +3

00 30 1 ,i iY x         (Model 2) 

 

β β β ε= + + +2

00 10 1 20 1 ,i iY x x        (Model 3) 

 

β β β ε= + + +3 2

00 30 1 12 1 2 ,i iY x x x        (Model 4) 

 

β β β ε= + + +3

00 11 1 2 30 1 ,i iY x x x        (Model 5) 

 

β β β ε= + + +2

00 11 1 2 21 1 2 ,i iY x x x x       (Model 6) 

 

β β β β ε= + + + +2

00 10 1 11 1 2 20 1 ,i iY x x x x       (Model 7) 

 

β β β β ε= + + + +2 3 2

00 20 1 30 1 12 1 2 ,i iY x x x x       (Model 8) 

 

β β β β ε= + + + +2 3

00 11 1 2 20 1 30 1 ,i iY x x x x       (Model 9) 

 

β β β β ε= + + + +2 3

00 11 1 2 12 1 2 30 1 ,i iY x x x x x    (Model 10) 

 

β β β β ε= + + + +2 3

00 11 1 2 21 1 2 30 1 ,i iY x x x x x    (Model 11) 

 

β β β β ε= + + + +2

00 10 1 11 1 2 21 1 2 ,i iY x x x x x    (Model 12) 

 

β β β β ε= + + + +2

00 01 2 11 1 2 21 1 2 ,i iY x x x x x    (Model 13) 

 

β β β β β ε= + + + + +2

00 10 1 01 2 11 1 2 20 1 ,i iY x x x x x    (Model 14) 
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β β β β β ε= + + + + +2

00 10 1 01 2 11 1 2 21 1 2 ,i iY x x x x x x    (Model 15) 

 

β β β β β ε= + + + + +2 3

00 10 1 11 1 2 21 1 2 30 1 ,i iY x x x x x x    (Model 16) 

 

β β β β β ε= + + + + +2 2 3

00 11 1 2 12 1 2 21 1 2 30 1 ,i iY x x x x x x x   (Model 17) 

 

β β β β β β ε= + + + + + +2 3

00 10 1 01 2 11 1 2 20 1 30 1 ,i iY x x x x x x   (Model 18) 

 
 

The parameter estimates of our fitted models are contained in 

Table 2. Using equation (3), the test statistic 2U were computed for the 

various models considered in this study and are also tabulated in Table 

2 together with the p values. 
 

From Table 2, we notice that the estimated parameter 

coefficients take on a wide variety of values both positive and negative. 

For every model considered in this study, the estimate for σ 2  was 

found to be 0.004. 
 

The estimated value for ρ  is in the range of 0.156 to 0.209. The 

log likelihood remains in the vicinity of 43.21 to 48.99 and 2U does not 

exceed 10.561. 
 

However, the most crucial thing that needs to be observed in 

Table 2 is the p  value, which ranges from 0.019 to 0.373. The p  value 

indicates whether or not a particular model differs from the null model 

(Model 1) significantly. Clearly then a smaller p  value would assist us 

in the selection of a model. Of all the models considered in this study, 

two models namely model 6 and 11 had the smallest p values of 0.019 
and hence they were significant at the 0.05 level. However since model 

6 is the simpler model of the two models, it would seem reasonable to 

choose model 6 over model 11. The significance of the coefficients of the 
co-variates were established by the Likelihood Ratio Test which gave the 

value, =2 8.445x  with 2 degree of freedom and p  value of 0.015. 

To test for the significance of ρ  the Likelihood Ratio Test gave a 

value, =2 18.318x  with 1 degree of freedom and p  value of 1.870 × 

10
−5

. This is very highly significant at the 0.001 level. 
 



Mahendran Shitan, Hernando Ombao & Kok Wei Ling 

 

Malaysian Journal of Mathematical Sciences 

 
22 

TABLE 2: Results of fitted models 
 

 Estimated 

parameter 

coefficients 

σ 2ˆ  ρ 2ˆ  Log 

Likelihood 
2

U  p- value 

Model 1 
00

ˆ 0.217β =  0.004 0.201 43.21 - - 

Model 2 
00

30

ˆ 0.217

ˆ 0.001

β

β

=

=
 

0.004 0.200 44.17 1.825 0.177 

Model 3 
00

10

20

ˆ 0.245

ˆ 0.007

ˆ 0.003

β

β

β

=

=

= −

 

0.004 0.209 44.26 1.970 0.373 

Model 4 
00

30

12

ˆ 0.217

ˆ 0.001

ˆ 0.001

β

β

β

=

=

= −

 

0.004 0.200 44.49 2.402 0.301 

Model 5 
00

11

30

ˆ 0.216

ˆ 0.005

ˆ 0.001

β

β

β

=

= −

=

 

0.004 0.170 46.93 6.981 0.030 

Model 6 
00

11

21

ˆ 0.216

ˆ 0.005

ˆ 0.001

β

β

β

=

= −

= −

 

0.004 0.166 47.43 7.919 0.019 

Model 7 
00

10

11

20

ˆ 0.230

ˆ 0.006

ˆ 0.004

ˆ 0.001

β

β

β

β

=

=

= −

= −

 

0.004 0.181 46.61 6.296 0.098 

Model 8 
00

20

30

12

ˆ 0.243

ˆ 0.002

ˆ 0.001

ˆ 0.001

β

β

β

β

=

= −

=

= −

 

0.004 0.206 44.92 3.167 0.367 

Model 9 
00

11

20

30

ˆ 0.228

ˆ 0.005

ˆ 0.001

ˆ 0.001

β

β

β

β

=

= −

= −

=

 

0.004 0.176 47.12 7.241 0.065 

Model 10 
00

11

12

30

ˆ 0.216

ˆ 0.005

ˆ 0.001

ˆ 0.001

β

β

β

β

=

= −

= −

=

 

0.004 0.170 47.25 7.481 0.058 

Model 11 
00

11

21

30

ˆ 0.216

ˆ 0.005

ˆ 0.001

ˆ 0.001

β

β

β

β

=

= −

= −

=

 

0.004 0.163 48.61 10.000 0.019 
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TABLE 2: Results of fitted models (continued) 
  

 
 

 
  

 Estimated 

parameter 

coefficients 

σ 2ˆ  ρ 2ˆ  Log 

Likelihood 
2

U  p- value 

Model 12 
00

10

11

21

ˆ 0.216

ˆ 0.006

ˆ 0.005

ˆ 0.001

β

β

β

β

=

=

= −

= −

 

0.004 0.168 48.02 8.907 0.031 

Model 13 
00

01

11

21

ˆ 0.216

ˆ 0.003

ˆ 0.005

ˆ 0.001

β

β

β

β

=

=

= −

= −

 

0.004 0.170 47.50 7.944 0.047 

Model 14 
00

10

01

11

20

ˆ 0.227

ˆ 0.006

ˆ 0.006

ˆ 0.005

ˆ 0.001

β

β

β

β

β

=

=

= −

= −

= −

 

0.004 0.172 47.13 7.162 0.128 

Model 15 
00

10

01

11

21

ˆ 0.216

ˆ 0.006

ˆ 0.003

ˆ 0.005

ˆ 0.001

β

β

β

β

β

=

=

=

= −

= −

 

0.004 0.172 48.10 8.935 0.063 

Model 16 
00

10

11

21

30

ˆ 0.215

ˆ 0.011

ˆ 0.005

ˆ 0.001

ˆ 0.001

β

β

β

β

β

=

= −

= −

= −

=

 

0.004 0.156 48.99 10.561 0.032 

Model 17 
00

11

12

21

30

ˆ 0.216

ˆ 0.005

ˆ 0.001

ˆ 0.001

ˆ 0.001

β

β

β

β

β

=

= −

= −

= −

=

 

0.004 0.163 48.94 10.470 0.033 

Model 18 
00

10

01

11

20

30

ˆ 0.223

ˆ 0.011

ˆ 0.006

ˆ 0.005

ˆ 0.001

ˆ 0.001

β

β

β

β

β

β

=

= −

= −

= −

= −

=

 

0.004 0.158 48.04 8.706 0.121 
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Some diagnostics plots were also obtained for the residuals of 

Model 6 and in Figure 2 the histogram of the residuals is shown. In 
Figure 3 the normal probability plot is shown and in Figure 4 the fitted 

values versus the residuals is shown. 

 
 

 

 

 
 

 

 
 

 

 

 
 

 
Figure 2: Histograms of the residuals 

 
 

 

 

 
 

 

 
 

 

 
Figure 3: Normal probability plot of the residuals 

 
 

 

 
 

 

 

 
 

 

 
Figure 4: Fitted values vs. Residuals 



Spatial Modelling of Peak Frequencies of Brain Signals 

 

Malaysian Journal of Mathematical Sciences 

 
25 

It is clear from Figures 2 and 3 that the residuals are approximately 

normally distributed. Plot of the fitted values against the residuals also 
indicate that Model 6 is an appropriate one. 

 

Other models besides models 6 and 11, that were significant at the 
0.05 level were models 5, 12, 13, 16 and 17. The remaining models can be 

safely discarded. 

 

 

CONCLUSION 

The objective of this research was to fit and illustrate spatial 

regression modelling that takes accounts of spatial correlation 

amongst its neighbors. It has been found that the model 

β β β ε= + + +2

00 11 1 2 21 1 2 1iY x x x x (Model 6) is an appropriate one, in the 

sense that it has the smallest p value when compared with the null 

model (Model 1). The coefficients of the covariates were also 

found to be significant. The parameter ρ  was highly significant at 

0.001 level explaining the importance of taking the spatial 

correlation between neighboring points into consideration in the 

modelling process. The usefulness of this model is that it would 

help us to estimate the peak frequencies at locations where no 

observations were recorded and would also lead to an 

understanding of the phenomenona. 

 

Different neighborhood structures and weights can also be 

attempted in any further study. Alternatively, further research can 

be done to fit spatial regression models with either Conditional 

Autoregressive (CAR) errors or Moving Average (MA) errors and 

to make comparisons with the proposed model in this research. 
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